FACHGEBIET MASSIVBAU

Aufgabe 8 – Konstruktion

(Eingabezeitraum: April + Mai + Juni)

Aufgabe 8.1 Einfeldträger mit Stabstahlbewehrung

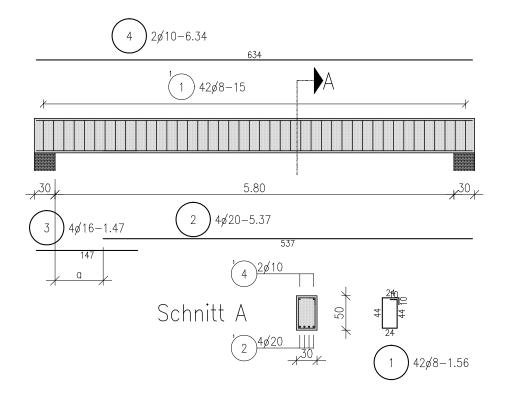
Baustoffe: Beton C20/25, Betonstahl B500A

Ständige Lasten: $g_k = 15 + z_x y_k N/m$

Bsp: Matrikelnr.***xyz = 123456: $g_k = 15 + 6,45 = 21,45 \text{ kN/m}$

Verkehrslasten: $q_k = 10 \text{ kN/m}$

Querschnitt: Breite b = 30 cm, Höhe h = 50 cm, Stahlschwerpunktlage $d_1 = 5$ cm


 $1 \varnothing 16 = 2,01 \text{ cm}^2$ $1 \varnothing 20 = 3,14 \text{ cm}^2$

gesucht: Wie groß darf die Länge a maximal werden (m) (Lösung A)?

Hinweise:

Der Hebelarm der inneren Kräfte für die Berechnung der Stahlzugkräfte an beliebiger
Trägerstelle soll näherungsweise mit z = 0,9d abgeschätzt werden.

Druckstrebenneigungswinkel = 30° konstant.

FACHGEBIET MASSIVBAU

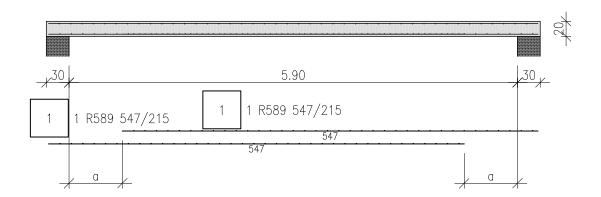
Aufgabe 8.2 Einfeld-Deckenplatte mit Mattenbewehrung

Baustoffe: Beton C20/25, Betonstahl B500A

Ständige Lasten: $g_k = 6.0 + 0.zxy \text{ kN/m}^2$

Bsp: Matrikelnr.***xyz = 123456: $g_k = 6 + 0.645 = 6.645 \text{ kN/m}^2$

Verkehrslasten: $q_k = 4 \text{ kN/m}^2$


Querschnitt: Plattenhöhe h = 20 cm, Stahlschwerpunktlage d_1 = 3 cm.

gesucht: Wie groß darf die Länge a maximal werden (m) (Lösung B) ?

Hinweise:

• Der Hebelarm der inneren Kräfte für die Berechnung der Stahlzugkräfte an beliebiger Trägerstelle soll näherungsweise mit z = 0,9d abgeschätzt werden.

• Druckstrebenneigungswinkel = 30° konstant.

